
Nonholonomic Control with Turtlebots

Jonathan Lee∗, Ginny Xiao†

April 8, 2019

1 Methods

1.1 Bang-Bang Control

We implemented the Bang-Bang controller by cycling between controlling x, φ, θ, and y, in that
order. For each state variable, we checked whether the true value was within a tolerance of the
desired value (these tolerances are 0.05 m, 0.05 m, 0.1 rad, 0.1 rad, respectively). If this value was not
within a tolerance, we applied proportional closed-loop control until the variable was sufficiently
close to the desired value. This control was simple for controlling x and φ, with gains of 0.6 and
0.5, respectively, since these variables could be manipulated directly. For controlling θ, we applied
a turning motion with gain 0.6. For controlling y, we applied a strafing (“parallel parking”) motion
with gain 2.5, where each motion took 0.8 s.

1.2 Sinusoidal Steering

To implement sinusoidal steering, we first steered x and φ, the Turtlebot’s forward displacement
and steering angle of the forward wheels, respectively. Since the robot has direct control over these
state variables, this was easy to do by applying a constant velocity.

To steer α = sin θ when the desired bearing |θd| < π/2, we modeled the inputs u1, u2 to x, φ as
sinusoids

v1 = u1 cos θ = a1 cos(ωt) (1)

v2 = u2 = a2 sin(ωt) (2)

where ∆t is the duration of the sinusoidal maneuver and ω = 2π/∆t is its frequency. Setting
a2 = max{1, ωmin{|φd − φmax| , |φd + φmax|}} arbitrarily, where φd and φmax = 0.3 are the desired
and maximum steering angle, respectively, we solved for a1 by numerically integrating:

β1 =
ω

π

∫ ∆t

0
f
(a2

ω
sin(ωt) + φ(0)

)
sin(ωt) dt f(φ) =

1

`
tanφ (3)

where ` is the length of the Turtlebot. Then, the a1 that yields a desired change in α (and θ) is
a1 = (ω∆α)/(πβ1).

For |θd| ≥ π/2 (that is, where the robot’s bearing is parallel to the positive or negative y-axis
at some point), there is a singularity at θ = π/2, so we ignore the canonical model and use a direct
relationship with θ instead:

θ̇ = f(φ)u1 (4)

∗jonathan-lee@berkeley.edu, SID 3031879358
†ginnyxiao@berkeley.edu, SID 3034306890

1

jonathan-lee@berkeley.edu
ginnyxiao@berkeley.edu

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

We solve for a1, a2, given ∆θ, in the same way as for ∆α, but now no longer need to compute
u1 = v1/ cos θ, which is undefined at |θ| = π/2. Instead, v1 = u1 directly.

To steer y, we use sinusoidal inputs again:

v1 = u1 cos θ = a1 sin(ωt) (5)

v2 = u2 = a2 cos(2ωt) (6)

Setting a2 = 0.26 arbitrarily to saturate φ (and create the largest displacements in y possible), we
compute

β1 =
ω

π

∫ ∆t

0
g

(∫ t

0
f
(a2

2ω
sin(2ωτ)

)
a1 sin(ωτ) dτ

)
sin(ωt) dt g(α) =

α√
1− α2

(7)

for various guesses of a1. Then, the resulting displacement is ∆y = πa1β1/ω.
To guess a1, we use a binary search:

(a) Initializing amin
1 = 0 and amax

1 = 20, we guess that a1 =
(
amin

1 + amax
1

)
/2.

(b) Using equation 7, we compute ∆y.

(c) If ∆y is within 0.001 m of the desired ∆yd, then output a1.

(d) If ∆y > ∆yd, then we have an overestimate and set amin
1 = a1. Otherwise, we have an

underestimate and set amax
1 = a1. In both cases, we return to step (2).

If, at any point, amin
1 > amax

1 , then there is no feasible a1, which we consider a failure.
Because the steering angle φ is limited to approximately (−0.3 rad, 0.3 rad), the displacement

the Turtlebot can drive in the y-direction is also limited. Therefore, we segmented translations in y
into separate translations of, at most, 0.25 m. Similarly, we segmented rotations in θ into separate
rotations of, at most, (π/3) rad.

2

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

2 Results

A video of our implementation is available at: https://youtu.be/r6tmWgoy7x0. The code for our
implementation is at this GitHub repository:

https://github.com/jonathan-j-lee/eecs-106b/tree/master/lab-03-steering

Figures 1, 3, 5, 7, and 9 show the true turtlebot (x, y, φ, θ) states reached versus the desired
states with the direct Lie algebra controller. Figure 2, 4, 6, 8, and 10 show the desired and true
(x, y) paths of the turtlebot.

For all the tasks that use proportional Bang-Bang control, the turtlebot ultimately reaches the
desired state with a small error bounded in range [−0.05, 0.05], but in different amounts of time.
Sometimes, it takes more than 50 seconds to converge, as shown in figures 7 and 3, and the 2D
path plots (figures 8 and 4) show that the turtlebot keeps moving back and forth. While the results
justify the robustness of closed-loop Bang-Bang Control, the effectiveness is not very good due to
the cost of overshoot and an oscillating steady-state condition.

One difficulty we encountered with the open-loop sinusoidal trajectories was that the Turtlebot
seemed to travel less than expected in the x-direction. To solve this, we significantly reduced the
speed of the robot by increasing ∆t to between 6 s and 14 s. We also multiplied the forward velocity
control by a scaling factor between 1.25 and 1.75 to compensate for this weaker drive, which could
result in accumulated error.

3

https://youtu.be/r6tmWgoy7x0
https://github.com/jonathan-j-lee/eecs-106b/tree/master/lab-03-steering

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

Figure 1: Trajectory with Bang-Bang Control and Desired Final State (x, y, φ, θ) = (1, 0, 0, 0)

Figure 2: 2D Path with Bang-Bang Control and Desired Final State (x, y, φ, θ) = (1, 0, 0, 0)

4

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

Figure 3: Trajectory with Bang-Bang Control and Desired Final State (x, y, φ, θ) = (0.5, 0.5, 0, 0)

Figure 4: 2D Path with Bang-Bang Control and Desired Final State (x, y, φ, θ) = (0.5, 0.5, 0, 0)

5

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

Figure 5: Trajectory with Bang-Bang Control and Desired Final State (x, y, φ, θ) = (0, 0.5, 0, 0)

Figure 6: 2D Path with Bang-Bang Control and Desired Final State (x, y, φ, θ) = (0, 0.5, 0, 0)

6

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

Figure 7: Trajectory with Bang-Bang Control and Desired Final State (x, y, φ, θ) = (0, 1, 0, 0)

Figure 8: 2D Path with Bang-Bang Control and Desired Final State (x, y, φ, θ) = (0, 1, 0, 0)

7

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

Figure 9: Trajectory with Bang-Bang Control and Desired Final State (x, y, φ, θ) = (0, 0, 0, π)

Figure 10: 2D Path with Bang-Bang Control and Desired Final State (x, y, φ, θ) = (0, 0, 0, π)

8

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

Figure 11: Trajectory with Sinusoidal Steering and Desired Final State (x, y, φ, θ) = (1, 0, 0, 0)

Figure 12: 2D Path with Sinusoidal Steering and Desired Final State (x, y, φ, θ) = (1, 0, 0, 0)

9

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

Figure 13: Trajectory with Sinusoidal Steering and Desired Final State (x, y, φ, θ) = (0.5, 0.5, 0, 0)

Figure 14: 2D Path with Sinusoidal Steering and Desired Final State (x, y, φ, θ) = (0.5, 0.5, 0, 0)

10

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

Figure 15: Trajectory with Sinusoidal Steering and Desired Final State (x, y, φ, θ) = (0, 0.5, 0, 0)

Figure 16: 2D Path with Sinusoidal Steering and Desired Final State (x, y, φ, θ) = (0, 0.5, 0, 0)

11

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

Figure 17: Trajectory with Sinusoidal Steering and Desired Final State (x, y, φ, θ) = (0, 1, 0, 0)

Figure 18: 2D Path with Sinusoidal Steering and Desired Final State (x, y, φ, θ) = (0, 1, 0, 0)

12

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

Figure 19: Trajectory with Sinusoidal Steering and Desired Final State (x, y, φ, θ) = (0, 0, 0, π)

Figure 20: 2D Path with Sinusoidal Steering and Desired Final State (x, y, φ, θ) = (0, 0, 0, π)

13

EECS 106B, Lab 3 April 8, 2019 Jonathan Lee, Ginny Xiao

3 Discussion

Upon analysis of the two systems, it can be concluded that both the proportional Bang-Bang
controller and the Sinusoidal Steering enable the robot to perform the task successfully. With
proportional Bang-Bang control the system is able to reach its desired state with a smaller error,
but can take a very long time to converge. Also, the trade-off between and steady-state error and
the percent overshoot due to the proportional gain tuning is inevitable. With Sinusoidal Steering
the system is able to reach the desired state efficiently and smoothly. In this lab, however, the
open-loop control scheme for Sinusoidal Steering results in larger errors.

4 Paper Summaries

Motion Planning for a Knife-Edge Moving on the Surface of a Torus [2] studies the motion-planning
problem for a knife-edge moving on the surface of a torus. This paper derives a kinematics for-
mulation for a knife-edge moving on an arbitrary smooth surface using global coordinates to avoid
singularities. This work builds on Sastry’s Steering on Sinusoids formulation of nonholonomic
systems by developing a novel motion planning algorithm based on the geometry of a torus.

SLAP: Simultaneous Localization and Planning Under Uncertainty via Dynamic Replanning in
Belief Space [1] proposed a dynamic replanning scheme in belief space that enables online replanning
for simultaneous localization and planning (SLAP). The underlying partially observable Markov
decision process (POMDP) introduced by SLAP is approximated offline based on the Feedback-
based Information RoadMap (FIRM) method, which provides a reliable framework for solving the
problem of motion planning under uncertainty by reducing the intractable dynamic programming
(DP) to a tractable DP over the nodes of the FIRM graph. Furthermore, this paper extends
previous work on FIRM by proposing a belief space planning scheme by extending rollout policy
methods to the stochastic partially observable setting. In particular, this method forces the system
to globally replan at every time step to enable SLAP. The extensive simulation and experimental
results shows that the proposed planner recovers the performance trade off in the stabilization
phase of FIRM.

In this paper, a nonholonomic robot—the iRobot Create—is used in the experiments and it
is modeled as a unicycle. To steer toward the target node, controllers designed for stabilizing
nonholonomic systems are to be used. A polar coordinate-based controller and a dynamic feedback
linearization-based controller are implemented based on Steering with Sinusoids.

References

[1] A. Agha-mohammadi, S. Agarwal, S. Kim, S. Chakravorty, and N. M. Amato. Slap: Simultane-
ous localization and planning under uncertainty via dynamic replanning in belief space. IEEE
Transactions on Robotics, 34(5):1195–1214, Oct 2018.

[2] Muhammad Rehan and M Reyhanoglu. Motion planning for a knife-edge moving on the surface
of a torus. October 2018.

14

	Methods
	Bang-Bang Control
	Sinusoidal Steering

	Results
	Discussion
	Paper Summaries

